Venus Atmosphere Platform Options Reconsidered

Presentation for IPPW-9, Toulouse, June 19, 2012

Graham E. Dorrington

School of Aerospace, Mechanical and Manufacturing Technology Royal Melbourne Institute of Technology (RMIT)

Australia

Author background Flights over tropical rain forest canopy

Content

- VEGA Super-Pressure Balloons (SPBs)
- VEGA derived vertical wind velocity
- EVE SPB (some concerns)
- Alternative platform options
 - Phase Change (Oscillating) Balloons
 - Other concepts

VEGA 1 and 2, June 1985

53.5 km altitude westward drift

46 hr limited by battery capacity

Blamont: "Demonstration or feasibility study" (1985)

Helium-filled spherical

Cytherean Triple Cloud Layer

VEGA 1

Pressure (mBar)

Temperature (K)

 Derived vertical wind velocity (m/s)

Illumination (lux)

VEGA 1

Pressure (mBar)

Temperature (K)

 Derived vertical wind velocity (m/s)

Illumination (lux)

VEGA 2

Pressure (mBar)

Temperature (K)

 Derived vertical wind velocity (m/s)

Illumination (lux)

Convection region 48-55 km

SPB above convection region drifts laterally towards convergent zones

'Subduction' of SPB into downward convergence zone

Bobbing in downward winds – dependent on super-pressure stabilisation

Vega 1

Pressure (mBar)

Temperature (K)

 Derived vertical wind velocity (m/s)

Illumination (lux)

Vega 1 & 2 wake effects

Wake measurements behind 0.5 m sphere

Test using RMIT Industrial Wind Tunnel Facility

Vega 1

A. Derived vertical wind velocity *w*

B. Balloon vertical velocity

C. Relative velocity w_{rel}

D. Anemometer velocity(extra noise caused by wake)

Vega anemometer data

Linkin et al. (1985) decided to only use anemometer data to establish zero relative flow conditions

And thereby establish the leakage rate (5%) over 46 hours

Derived vertical wind velocity

Vertical equation of motion:

$$(M + k\rho V)\frac{\partial^2 z}{\partial t^2} = (1 + k)\rho V \frac{\partial w}{\partial t} - F_D - Mg + \rho gV$$

Apparent mass term k not properly known for separated flows

$$F_D = \frac{1}{2} \rho A C_D \left(\frac{\partial z}{\partial t} - w \right) \frac{\partial z}{\partial t} - w$$

Drag coefficient term C_D only known approximately, 20% error?

Derived vertical wind velocity, w

Reduction by Linkin et al. (1985):

$$\frac{1}{2} \rho A C_D w_{rel} |w_{rel}| = \rho g V - Mg$$

$$w_{rel} = \frac{1}{\rho g} \frac{\partial P}{\partial t} - w = \frac{RT}{gP} \frac{\partial P}{\partial t} - w$$

Linear envelope volume relation (e = elasticity parameter):

$$V = V_0(P_H - P)/(eP_0) + V_0$$

Linkin et al. (1985) "compute" helium pressure and hence envelope volume in order to derive w

Derived vertical wind velocity

Volume of envelope may actually be derived directly,

$$V/V_0 = \{e - p + \sqrt{(e - p)^2 + 4e\theta\sigma}\}/2e$$

 $p = P/P_0$, when T_H/T_{H0} , when T_{H0}

But

- elasticity parameter is dependent on modulus of elasticity of TeflonTM (PTFE) envelope (variable in domain of interest), implies that linear volume relation used is doubtful
- 2) Linkin et al. assumed helium temperature is same as ambient (after float height attained and before sunrise)
- 3) Any precipitation (?) on envelope would change mass

VEGA SPB summary

- Vega derived wind velocity may have an error of about +/- 0.4 m/s, but raw flight data is needed to verify this claim
- What happened to Vega 1 & 2 after transmission loss?
 - They may have completed multiple circumnavigations
 - Or they may have suffered super-heating at midday and subsequent helium venting and premature irreversible descent

EVE (2010) Proposal

- Float of 240 hours to "guarantee at least one circumnavigation of Venus" at 55 km
- Science goals include cloud chemistry and measurements of noble gas isotopic ratios, as well as meteorology.
 - Scientific payload (15-20 kg)
 - More power (40 W) and capacity (8600 Wh) than VEGA, solar power augmentation during daytime
 - 5 m diameter envelope for 60 kg float mass (3.5 m VEGA)

Concerns about EVE (2010)

- ESA concerned that choice of 55 km does not permit sampling of other altitudes, e.g., dense lower cloud with large mode 3 particles (49 km) and unknown UV absorber (70 km)
- Anemometer will be in downward flow (repeating VEGA again)
- Smooth sphere is subject to lateral oscillations (could be mitigated by using a JIMSPHERE)
- Super-heating a midday remains a concern (loss of mission). Vertical stability of SPB is improved by using higher strength envelope with higher *e* value, but this is weak effect. Terrestrial long endurance SPB experience (e.g. "VORCORE") has been limited to relatively calm stratospheric flight with low vertical wind velocities (cm/s) but mission loss is typically more than 5%.
- Heavy helium/hydrogen storage tank (75 kg) required

Alternative Platform Options

Free Balloon with Phase Change Fluid (PCF)

Tandem Configuration
Schematic

Free Balloon with Phase Change Fluid (PCF)

Toroidal Configuration

Schematic

Vertical Oscillation (H₂O helium tandem)

Phase Change Fluid (PCF) options

Higher MW PCFs increase oscillation altitude, but reduce payload fraction

PCF	Mol W. / (gram mols)	P *	T*	Z*
acetic acid	60	0.71	467	33
water	18	0.28	404	42
ethanol	46	0.11	355	49
methanol	32	0.08	332	52
acetone	58	0.07	316	54
pentane	72	0.04	284	57

Oscillating Phase Change Balloons

- Have been demonstrated in Earth troposphere (ALICE)
- Well known thermodynamics govern predicted oscillation
- High risk deployment and initial helium/hydrogen inflation can be tested at similar Earth-Venus conditions
- Secondary envelope offers low altitude safety "buffer" (reducing mission risk)
- Permits multiple traverses of cloud layers
- MIL specification electronics possible down to 43 km (PCF evaporation cools payload).
- Slightly reduced payload ratio

Other Options Requiring Study

Infra-Red Montgolfière

Fixed-Wing Gliders (6 hours)

Parawings (solar power, 10 hours)

Vetrolets (wind shear dependent)

Etc.

Conclusions

VEGA 1 & 2 SPB flights
rank with major aeronautical historical events
but may not have circumnavigated Venus after power loss

For (multiple) circumnavigation of Venus Phase Change Balloons offer:

- 1) lower risk of premature mission loss
- 2) multiple traverses of cloud layers

The Birth of Venus, William Adolphe Bougue

End

